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Dynamical Correlations in a Hard-Disk Fluid: 
Generalized Enskog Theory 
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The generalized Enskog theory of a hard-disk fluid is solved by a kinetic model 
method. Time correlation functions of the conserved variables of density, 
longitudinal and transverse current, and energy density are evaluated. The 
theoretical results are tested against molecular dynamics data at a density 
roughly half the solidification density. The good agreement obtained indicates 
that a kinetic equation which ignores correlated collisions can provide an 
adequate description of space-time correlations at finite wavelengths and fre- 
quencies in dense fluids in two dimensions. 
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1. INTRODUCTION 

The study of hard-sphere fluids has contributed to much of the current 
understanding of dynamical correlations in simple fluid systems. (1) The 
kinematics of hard-sphere interaction makes it feasible to analyze time 
correlation functions using a kinetic theory approach which takes into 
account the effects of uncorrelated binary collisions. (2~ Calculations have 
been carried out using the Enskog equation (3) and the results compared to 
molecular dynamics simulation data. (4) In this way, one is able to show 
that in three dimensions the density and current correlation functions in 
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simple fluids at. densities up to at least half the liquid density can be 
adequately described (leaving out long time tails) without considering the 
effects of correlated collisions. Using the simulation data at liquid density 
one can furthermore pinpoint those features which cannot be calculated 
from the Enskog equation(el; it turns out that these features can be 
obtained by extending the analysis to include correlated collision contribu- 
tions through a self-consistent mode-coupling approximation. (5~ 

One may expect the Enskog theory to have a similar range of validity 
in two-dimensional fluids. However, this has not been demonstrated. Mo- 
lecular dynamics studies of the velocity autocorrelation function in hard- 
disk fluids are well known, since these were the results that led to the 
discovery of the long time tail in time correlation functions. (6'7~ More 
recently, simulation results for the stress correlation function related to the 
shear viscosity coefficient have appeared. (8~ On the theoretical side, Enskog 
transport coefficients for hard-disk fluid have been derived, (9~ and long 
time asymptotic behavior (1~ has been analyzed. 

The purpose of this work is to calculate the density and current 
correlation functions in a two-dimensional hard-sphere fluid using the 
generalized Enskog equation and to present new molecular dynamics 
results which demonstrate the validity of the theory. It should be noted at 
the outset that we are concerned with time correlation function behavior at 
finite wave numbers and short and intermediate times. In these regions one 
does not expect any anomalous behavior associated with the asymptotic 
nonexponential decay. 

The paper is organized as follows. In Section 2 we formulate the 
problem of calculating time correlation functions in terms of a phase-space 
collision operator (memory function) which contains contributions from 
binary collisions and correlated events. Keeping only the binary collision 
contribution reduces the calculation to one based on the generalized 
Enskog kinetic equation. The solution of the Enskog equation by retaining 
only the first few matrix elements of the collision operator is discussed in 
Section 3. In Section 4, numerical results for the density and the transverse 
and longitudinal current correlation functions are compared with molecular 
dynamics simulation data at a density of A/Ao= 3, where A o is the 
close-packed area. One finds generally good agreement. In Section 5, we 
discuss the significance of the present results and the expected deficiency of 
the Enskog theory at liquid density. 

2. K I N E T I C  E Q U A T I O N  

We consider a system of N disks, each of diameter a and mass m, in an 
area A interacting with the hard core potential u(r) = oo, 0 for r > a, r < o, 
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respectively. Particle positions and momenta are denoted by ri,Pi, 
i = 1 . . . .  , N. The fluid density n = N / A  can be expressed in terms of the 
area ratio A/Ao, no 2= (2 /~ ) (A /Ao) - l ,  with A 0 being the close-packed 
area. 

The time evolution of the system may be described by a "pseudo"- 
Liouville operator _f_+ for' forward and backward streaming. (li) For a 
dynamical variable A, one has A(t )= eiJ+-tA(O), for t ~0. The Liouville 
operator has two parts, J +  = J 0  + J ; ,  describing free streaming and 
two-particle collisions, respectively: 

J 0  = - i~-~ v~V n (la)  
n 

t i A _ A 

f +  = ~ ~] VnmrnmO(+Vnmrnm)~(Irnm I -- o)(bnm - 1) (lb) 
nvam 

In Eq. (lb) the operator b.m replaces the momentum p. or Pm by bnmPn,m = 
P.,m ~ (P.m" ?.m)?.m, V denotes the velocity, r.m = r . -  rm, ~ = r/Irl, and 
O(x) = 1,0 for x > 0, x < 0, respectively. 

The time correlation function of a dynamical variable A (t) is defined 
by 

~(t) = (A (t) lA) (2a) 

where the brackets denote an equilibrium average (A I A) = (6.4 *8A ) of the 
fluctuation 6.4 = A - (A)  at temperature T. It is convenient to consider 
also the Laplace transform of the time correlation function 

= +_ i;;dtO(+__ t)eiZtg,(t), Imz X 0 q,(z) 

= (AI(JT_ -- z ) - ' ]A)  (2b) 

in the form of a resolvent operator matrix element. The spectrum of q~(t), 

qY'(w) = 1 f__Ldtei,Otq~(t ) (2c) 

is the discontinuity of 0(z) across the real axis, q~(w ___ ie) = ep'(~0) + i0"(c0). 
These formulas may be easily generalized in the case of a set of several 
dynamical variables. (121 

The basic variable of kinetic theory is the phase space density f(p, r) 
= (1/x/N)~-~,iS(r - r~)d(p - p~), simply abbreviated by f(1). After multipli- 

cation by suitable momentum functions and integration over momentum it 
yields the macroscopic variables like the local density, current density, 
energy density, and so on. The phase-space density correlation function 

0(12, t) = (f(1, t)If(2))  (3) 
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satisfies a formal, exact kinetic equation 

[(z + qv)~p~ -[" Cp~(q, z)]~bpp,(q, z) = - Xpp'(q) (4) 

which may be derived following the same procedure as that used in the 
analysis of three-dimensional hard-sphere fluids. (s) Here Xpr ~P(P) 
dpp, + ~(p)~p(p')nh(q) is the static phase space correlation function given 
in terms of the Maxwellian velocity distribution V ( P ) =  (2~rmT) -1 
exp(-p2/2mT) (we set Boltzmann's constant k B = 1 in the following) 
and the pair correlation function ng ( r ) = ( 1 /N) (~ i~ f i ( r - rg ) ) ,  with 
h(r) = g ( r ) -  1. Also Fourier transformations have been introduced as 
h(q) = fdre-iq'rh(r), and integration over the momentum variable with 
an overhead bar is implied. 

In Eq. (4) all the interaction effects are described by the operator 
Cpp,(q, z), which consists of three parts, 

Cpp,(q, 2) = App,(q) -[- Tpp,(q) -b Mpp,(q, z) (5a) 

A pp,(q) = - q v ~  ( p )  nc (q) (5b)  

Tpp,(q) = tpp,(q) + ng(o)h<~ ' (5c) 

tpp,(q) = - inag(o)fdPl2fdpl ap2~p(p,)cp(p2)(v,2f,2)O(v,2?,2) 

•  - p,)(bt2 - 1)[~(p' - p,) + eiq;'2~ ' -  P2)] (5d) 

The first part App,(q) is the mean field contribution; it is entirely specified 
by the direct correlation function c(q) which is related to the static 
structure factor S(q)= 1 + nh(q) by the Ornstein-Zernike relation c(q) 
= h(q)/S(q). The second part is the Boltzmann-Enskog collision operator 
describing instantaneous two-particle collisions; it is the extension of the 
Boltzmann collision operator for hard disks by taking into account the 
finite size a of the particles, hence the wave-number dependence of Top,(q ), 
and the enhanced probability of finding two particles at contact at higher 
densities. In Eq. (5c) the second part of Tpp.(q) only ensures particle number 
conservation, and h(~ is the Fourier transform of O(r-  a) - 1. Notice 
that Tpr is frequency independent due to the instantaneous nature of 
hard-core collisions. 

The last part M(q, z) in Eq. (5a) describes more complicated collision 
sequences involving more than two particles, e.g., ring or repeated ring 
collisions; it is dependent on both wave number and frequency. A formal, 
exact expression for M(q,z) may be derived, for example, by using the 
Zwanzig-Mori projection operator technique. It will not be discussed here 
since the present calculation is only concerned with the first two terms in 
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Eq. (5a). In the case of three-dimensional hard-sphere fluids, a self- 
consistent mode-coupling approximation for M(q,z) has been developed 
recently, (5~ and it has been shown that this approximation could account 
for the new qualitative effects which appear only at liquid densities, shear 
wave propagation at finite wave number and a second relaxation compo- 
nent in the decay of density fluctuations. At lower densities, below roughly 
half the solid density, viscoelastic behavior does not appear in the density 
or current correlation functions. If we restrict our attention to this density 
range, then M(q, z) may be neglected in a first approximation. The result- 
ing kinetic equation then becomes the generalized Enskog equation, which 
has been discussed quite extensively in the case of three-dimensional 
fluids. (z3) This is the  equation we will solve in the next section and 
compare the results with molecular dynamics simulation data in Section 4. 

3. APPROXIMATE SOLUTION 

We will solve Eq. (4) using the method of kinetic models. A complete 
orthonormal set of momentum states ~k(P), k = I , . . .  is first chosen, then 
the infinite-dimensional matrix of the collision operator C(q,z) is approxi- 
mated by retaining matrix elements Cgj(q,z), i , j  < N, and replacing the 
remaining part of C(q, z) by a diagonal matrix with all diagonal elements 
equal, Csj(q,z)= a(q,z)8 0 for i or j >  N. The kinetic equation is thus 
converted to a set of coupled algebraic equations and may be solved 
exactly. The N • N matrix equation for the N dynamical variables chosen 
for explicit treatment may be written as (5~ 

[z + ~(O)(q) + C(q,z) + m(~ �9 q~(q,z) = - x ( q )  (6) 

Here f~(0)(q) is the matrix corresponding to the free-streaming term f~O)(q) 
= (i[q" vlk), and m(~ z') is the matrix of free particle memory functions 
with a shifted frequency argument z' = z + a(q, z). The appearance of m (~ 
is the result of eliminating all the other one-particle modes besides the N 
modes considered explicitly, and it guarantees the correct free-particle limit 
of the correlation functions ~q(q, z) at large wave numbers. 

The set of dynamical variables we are concerned with must contain the 
four conserved hydrodynamic variables, density, longitudinal and trans- 
verse current, and energy densities. In addition, we will include those 
variables related to the various transport coefficients in order to ensure that 
the resulting kinetic equation description will have the correct hydrody- 
namic limit at small wave numbers. Because of rotational invariance, 
longitudinal and transverse correlations can be treated separately. Thus, the 
simplest choice is N = 5 in the longitudinal case, and N --- 2 in the trans- 
verse case. The two sets of variables, each normalized such that X/j(q) = 6y, 
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are 
1 

At(q)- iS(q)]1/2 f dp fp(q) 

A2(q) = f dp PY (mT),/2 fP(q) 

1 p2 1)fp(q) 
A~(,)- [Cv(q)],/: fdp(  2m----T- 

mT 2roT fp(q) 

As(q)= dp 2mT 2 PY (mT)W2 fP(q) 

in the longitudinal case, and 

(7a) 

results 

~,2(q) = qVo/E S(q) l '/2, 
~22(q) = ip~ (qo)2i4(qo), 

~23(q) = qv0[1 + yio(qa)], 

S224(q ) = qv0[1 + �89 yi6(qo)]' 

3~ ~25(q) = ie ~ (qo)2i4(qo), 

f~33(q) = ip�88 

~34(q) = it,~ (qa)2i2(qo) 

~35(q) = qvo~ [1 + 3 yio(qa) ] 

~244( q ) = M7( qa ) 

~45(q) = qvo 2-'/2[ 1 + -] yi6(qo ) ] 
(8a) 

f~55(q) = il'�89176 

A,(q)=(@ P~ (mT),/2 fP(q) 
(7b) 

PxPy 
A2(q) = J d p  fp(q) 

in the transverse case, where fp(q) is the Fourier transform of f(p, r) and 
Cv(q) = 1 is the specific heat at constant volume. Using these states, one 
can now calculate the matrix elements of the free-streaming term, the mean 
field term, and the collision operator term as indicated in Eq. (6). The 
evaluations in the first two cases are straightforward, the details of which 
will not be reproduced here. The calculation of the matrix elements of the 
Boltzmann-Enskog collision operator in the basis of two-dimensional 
Sonine polynomials is of some interest; it is discussed in the Appendix. 
Denoting the sum of all three contributions by ~pp,(q)  ---- q. V•pp, -I- App(q)  -t- 
Tpp,(q), we find for the calculation of longitudinal correlation functions the 
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and for the calculation of transverse correlation functions 

~21,(q ) = iv�89 

a,2(q) = qvo[1 + �89 yi2(qo) ] (8b) 

a22(q ) = ivis(qo ) 

To complete the kinetic model specification, we choose, more or less 
arbitrarily, the state A6(q) = (1/2) fdp[(p2/2mT) 2 - 4(p2/2mT) + 2]fp(q), 
to calculate the diagonal element of C/j for i, j > N, thus obtaining a(q) 

= i(v/2)ig(qe ). In Eq. (8) Vo=~--/rn is the thermal velocity, v = 

2~/-~ nog(o)v o is the Enskog collision frequency, y = (~r/2)no2g(e) is related 
to the pressure by p = nT(1 + y), and the functions /~(x), n = 0 . . . . .  9, 
normalized according to i n (0) = 1, are defined in the Appendix in terms of 
Bessel functions. Notice that ~ik = ~2k;, and ~2~l(q ) = 0 for k v ~ 2 in the 
longitudinal case due to particle number conservation. 

The only nonzero matrix elements of the free-particle memory kernels 
in Eq. (6) are m}~ i,k = 4 and 5, and m(~ ~u, z) in the longitudinal 
and transverse cases, respectively. The latter follows from the fact that for 
the noninteracting system the time derivatives of A 1 in the transverse case, 
for example, is proportional to A2, and therefore the fluctuating force 
corresponding to A l vanishes. To calculate these matrix elements one can 
apply Eq. (6) to the noninteracting system and express the memory kernels 
in terms of the correlation functions q~9)(q,z)= [A,(q)ll/(J0- z)[Ak(q) ] 
which are known. The results may be expressed in terms of the com- 
plex plasma dispersion function (~3) w(z) in a similar way as in the case 
of three-dimensional fluids, (5) for example, r176 i(~7/2)1/2(qvo) - '  
w ( z / v ~  qvo). Thus, the correlation functions of the set of variables defined 
in Eqs. (7) are now completely determined by solving the 5 • 5 or 2 • 2 
matrix equation, 

[z + ~(q) + m(~ ]q~(q,z) = - 1 (9) 

For the correlation functions of the longitudinal variables Eq. (9) 
becomes 

2 

a12(q) 

0 

a12(q) 0 ] 
z + qZD,(q,z) az3(q) + q3L(q, z) q~(q,z) = - 1 (10a) 

~223(q ) + q3L(q,z) z + q2K(q,z) 

For the transverse current correlation function Eq. (9) gives 

[z + q2Dt(q,z)]q~,(q,z ) = - 1 (10b) 

Here ~12(q)---qvo[S(q)] -~/2= ~20(q) is a characteristic frequency of the 
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fluid, and a23(q ) = { q v o [ f v ( q ) ]  - 1 / 2 }  f l ( q ) ,  where fl(q) is a wave-number- 
dependent thermal stress coefficient generalizing f i ( q = O ) = ( 1 / n )  
(3P/3  T)n in the same way as S(q) is a generalized compressibility S(q = O) 
= T(3n/3p) r. Also, wave-number- and frequency-dependent transport 
coefficients D~(q, z), Dr( q, z), K(q, z) are introduced which denote the gener- 
alized kinematic longitudinal and shear viscosities and heat conductivity, 
while L(q, z) is a coefficient coupling temperature and longitudinal current 
fluctuations. These transport coefficients are given (see Ref. 5) in terms of 
the matrix elements of f~(q) and m (~ (q, z'). 

The zero-wave-number limit of the generalized transport coefficients 
are time correlation functions of interest. For example, 

( 1 A2(q= 0)) (11) D,(z) = l imDt(q,z)  = A f f q = O )  S _  z 
q---~O 

x y where A2( q O) = ( 1 / f N ) ~ n ( p , p n / m T )  is the kinetic transverse stress 
tensor. The corresponding time correlation function (A2(t)A2(O)) can be 
directly determined by molecular dynamics simulation. Provided the zero- 
frequency limits exist, they yield the transport coefficients of shear viscosity 
~/, bulk viscosity f, and thermal conductivity X according to the standard 
Green-Kubo (14) formulas 

lim D t ( z  ) = i~/mn 
z--~ iO 

lim D~(z) = i(~ + ~) /mn  (12) 
z--~ iO 

lim K(t)  = iX/nC v 
z--> iO 

The results of the approximate solution of the generalized Enskog 
equation, denoted by superscript E, are 

.t' o 2 -  v~ ~ (1 + y / 2 )  2 
D / r ( Z )  = t -~ z + it' 

Off(z)  = i3t'o 2 -  v~ (1 + y / 2 )  2 (13) 
z +  ie 

�9 t" o2  (1 + 

KE(z) = t ~  - v~ z +  ie/2 

The frequency spectra of the generalized transport coefficients are therefore 
Lorentzians with widths determined by the collision frequency 1, superposed 
on a constant background. The corresponding time correlation functions 
have an instantaneous component proportional to 3(t) and an exponen- 
tially decaying component. The presence of a single relaxation time is a 
direct consequence of our choice of the lowest-order kinetic model descrip- 
tion. By including more matrix elements of Gy, i.e., increasing N, one can 
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systematically improve on this approximation. Based on previous experi- 
ence, (4) the changes are expected to be small numerically. 

The transport coefficients, obtained from Eqs. (11) and (12), are 

o2 v~ (1 + y / 2 )  2 
E / mn = -8 + t, 

p 02 ; E / rnn = -~ 

p o2 4v02 (1 + 43-y)2 )t E / mn = -~ + 
p 

(14) 

These agree with the results (9) derived from the Enskog equation using the 
first Sonine polynomial approximation. (is) 

4. NUMERICAL RESULTS AND COMPARISON WITH MOLECULAR 
DYNAMICS DATA 

In order to obtain numerical results in our analysis of the generalized 
Enskog kinetic equation, one needs to specify as input data to the theory 
the static structure factor S(q )  and the pair correlation function at contact 
g(a). Since we will compare our numerical results with computer molecular 
dynamics simulation data, we will use the value of S(q )  obtained by 
simulation. For g(o)  we will use the empirical expression (16) 

1 - 7~/16 ~3/64 
g(0) - (1 - ~)2 (1 - ~)4 (15) 

where ~ = ~rno2/4 is the packing fraction, which agrees very well with 
Monte Carlo results. 

For two-dimensional hard-sphere fluids extensive molecular dynamics 
data on the self-diffusion coefficient and the velocity autocorrelation func- 
tion are available in the literature. (6-8) By contrast, essentially no informa- 
tion on space-dependent time correlation functions has been reported. We 
present here molecular dynamics results for the density, longitudinal and 
transverse current, and energy correlation functions at a fluid density of 
no 2=  0.385 or A / A  o = 3, which is roughly half the freezing density. (17) 
Following the same procedures previously employed, (6) simulation on two 
different sized systems, N = 504 and 2016, has been carried out. For 
N = 504, the system was allowed to run until 29 • 106 collisions have 
occurred, while for the larger system the total number of collisions was 
19 x 106. From these trajectories time correlation functions were computed 
as averages over 1.138 • 105 and 8,977 time origins, respectively, for the 
two systems. 
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The larger simulation system was chosen to have exactly twice the 
linear dimensions of the smaller system; this makes it convenient to 
calculate time correlation functions at the same wavelengths and thus 
obtain an indication of the effects of finite system size. The longest 
wavelength of fluctuations that could be sustained in the N = 504 system, 
which was a rectangular array of 21 x 24 particles with periodic boundary 
conditions, corresponded to a wave number of qmin = 0"1730-1 along the 
longer x direction and 0.1745a - t  along the shorter y direction. (The 
simulation cell dimensions were unity and 0.9897 along these two direc- 
tions.) The corresponding minimum wave numbers for N = 2016 would be 
half these values. Time correlation functions were calculated for particular 
wave vectors along the x, y or diagonal directions. Comparison of data for 
wave vectors along different directions offers a measure of the isotropy of 
the results as well as an indication of the statistical fluctuations in the data. 

For comparison with the computer data, the density correlation func- 
tion dPll(q, Z) is obtained from Eq. (10a), 

z + q = D ( q , z )  
eO,,(q,z  ) = - z2 _ f~2o(q ) + z q 2 ~ ( q , z  ) (16a) 

6 

bA 

3 
Z 4 
if) 

t 'M 

' I ' I ~ I 

O 

O 

O 

O O 

I I 1 I I 
0.5 1.0 1.5 

Fig. 1. Dynamical  structure factor of hard-disk fluid ( A / A  o = 3) at qo = 0.173, generalized 
Enskog theory (full curve) and  molecular dynamics  data with N = 504 (circles). "r E is the 
Enskog collision time. 
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where /~(q,z) is essentially the longitudinal viscosity modified by the 
coupling to temperature fluctuations, 

J S ( q , z )  = D , ( q , z )  - 
[~23(q) + q3L(q,z)]2/q 2 

z + q2K(q,z) 
(16b) 

Equation (16a) gives correctly the zeroth and second frequency moments of 
qh l(q, z); it is known that the fourth moment of the exact qhl(q, z) does not 
exist. The dynamical structure factor S(q,o~)= q,{l(q,w)/Tr is shown in 
Fig. 1 at qo = 0.173 along with the simulation results. The frequency 
spectrum is essentially what one would expect of density fluctuations near 
the hydrodynamic regime of small wave numbers. The Enskog theory, in 
the present low-order kinetic model approximation, is able to quantitatively 
account for the diffusive (Rayleigh) and the propagating (Brillouin) modes. 
The comparison of the intermediate scattering function F(q, t) shows good 
agreement at several wave numbers between calculation and various simu- 
lation data, as can be seen in Fig. 2. One may infer from these computer 
results that the effects of N-dependence and of statistical uncertainty are 

1.0 

F(q,t) 

(a) 

qo- : 0 . 0 8 6 5  

~ o~ 

o ~ ~ 

I00 200 

/ r E 

Fig. 2. Intermediate scattering function F(q, t) of hard-disk fluid (A /A  o = 3) at various wave 
numbers, generalized Enskog kinetic theory (full curve) and molecular dynamics data (open 
circles). (a) qo = 0.0865, simulation data with N = 2016. (b) qo = 0.173, simulation data with 
N = 504. Additional simulation data with N =  504 and qo = 0.1745 (crosses) and with N 
= 2016 and qo = 0.173 (triangles). (c) qa = 0.346, simulation data with N = 504. 
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I.O 

F(q,t) 1 
(b) 

qo-:0.175 

xo A o o x • ~ - ~ - o ~  

"-/2o 4o ~ 60 8o 

lIT E 

1.0' 

F(q,t) 

.5 

(c) 

qo-: 0.546 

0 oo 

, ~  0 

I0 20 30 40 

t / T  E 

Fig. 2. Continued. 
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Table I. Static 
Structure Factor of 
Hard-Disk Fluid at 

A/Ao = 3 Obtained by 
Molecular Dynamics 

Simulation 

qo S(q) 

0.0865 0.266 a 

0.0874 0.252 ~ 

0.1223 0.246 a 

0.173 0.254 ~ 

0.235 a 

0.1745 0.252 a 

0.240 b 

0.2447 0.237 b 

0.346 0.240 b 

0.3496 0.242 b 
i 

a D a t a  f rom N = 2016 sys- 

tem. 
b D a t a  f rom N = 504 sys- 

tem. 

o 4 

~ 5o x~x~ ioo ~ o ~ , , ~--t/T E 

Fig. 3. Long i tud ina l  cur rent  cor re la t ion  func t ion  Jr(q, t) of hard-d i sk  f luid ( A / A  o = 3) at  
qa = 0.173, genera l ized  Enskog  k ine t ic  theory  (full curve)  a n d  molecu la r  dynamics  da ta  with 
N = 504 (circles). 
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small, a few percent or less, a conclusion that would be consistent with 
previous experience from the analysis of simulation data on three- 
dimensional fluids. (4) The most sensitive results appear to be the static 
structure factor S(q). The present simulation data are summarized in 
Table I. 

The longitudinal current correlation function ~22(q,z) is directly re- 
lated to the density correlation function by the continuity equation 

z[zr + 1] = ~2~(q)eo22(q,z ) (17 )  

which implies for the spectra ~5~'2(q,0~ ) = (~/~0)2r The Fourier 
transform Jl(q,t) of the calculated @22(q,z) is shown in Fig. 3 along with 
the molecular dynamics results. Due to the instantaneous hard-core colli- 
sions Jl(q, t) is not analytic at small times; its short time expansion 

Jz(q,t) = 1-3(qo)2i4(qo)plt I + O(t 2) (18) 

is given correctly by the Enskog theory. (18) 
The energy correlation function e&,(q,z) where c(q)= [1 + S(q)] -1/2 

f(p2/2mT)fp(q) has not received much attention. Its spectral features 
resemble those of S(q, ~) and ~'2(q, ~) in that both the diffusive and the 
propagating modes are prominent. This function can be expressed as 

c#,,(q,z) = { S(q)f]l(q,z) + r + z[ S(q)]l/2dO,3(q,z))/[l 4- S(q)]  

(19) 

A comparison of its Fourier transform with simulation results at qo = 0.173 1.0~ qo-=0.175 

- . 5 ~  

,/r c 

Fig. 4. Energy correlation function F,(q, t); same notation as Fig. 3. 
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Fig. 5. Transverse current correlation function Jr(q, t); same notation as Fig. 3. 

is shown in Fig. 4. The short time expansion of F~(q, t) is 

F~(q, t) = 1 - �88 + O( t  2) (20) 

The good agreement between generalized Enskog theory and computer 
simulation data extends also to the transverse current correlation function. 
Figure 5 shows the results for qo =0.173. Enskog theory again gives 
correctly the short-time expansion 

Jr(q, t) = 1 - ~(qo)2il(qo)p[t[ + o( t  2) (21) 

5 .  D I S C U S S I O N  

The generalized Enskog kinetic theory is an attempt to treat transport 
processes in dense fluids while still considering only uncorrelated binary 
collisions. Its success in describing the time correlation functions consid- 
ered here means that the theory is useful over a range of densities up to at 
least A / A  o --3. This conclusion is consistent with the results obtained in 
three dimensions. (4) At liquid densities, A / A  o < 1.4 (freezing (17) occurs at 
A / A  o = 1.31), one can expect the Enskog results for the dynamic structure 
factor S(q,~o) and the transverse current correlation function to show 
qualitative deficiencies. In S(q,  o~), Enskog theory will be unable to describe 
properly the low-frequency behavior, whereas in art (q, ~0) it will not be able 
to describe the onset of shear wave propagation, (4) both features being 
associated with viscoelastic effects in a dense medium. (In addition, it is 
well known that the Enskog theory is not able to predict the long-time 
power law decay of time correlation functions.) 
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It will be useful to perform molecular dynamics simulation at densities 
A / A  o = 1.4 and higher to confirm the breakdown of the Enskog theory. 
Availability of such data would provide the motivation to formulate self- 
consistent mode-coupling calculations for two dimensions. This type of 
calculation has been carried out for three-dimensional fluids, both hard 
sphere (5'19) and continuous potential systems, (2~ with good results. Our 
expectation is that the mode-coupling approach will be sufficient to treat 
the viscoelastic effects in S(q, o 0 and ~(q, co). 

The agreement between Enskog theory and simulation data at A / A  o 
= 3 also implies that collective effects which give rise to nonexponential 
decay of time correlation functions are not readily observable in the various 
functions studied here. It is well known that at this density there is a 
significant enhancement of the self-diffusion coefficient over the Enskog 
value as a result of the long time tail contribution in the velocity autocorre- 
lation function. (6) In a separate paper (2i) we will consider the Enskog 
equation in two dimensions for the self-correlation function at finite wave 
number and show that the theory is adequate up to a density of A / A  o = 2. 
Again, one can go to higher densities by extending the analysis to include 
correlated collision effects. 
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APPENDIX: MATRIX ELEMENTS OF THE COLLISION OPERATOR 

We will evaluate the matrix elements of the Enskog collision operator, 
Eq. (5d), using the Sonine polynomials. Hermite polynomials, on the other 
hand, also could be chosen as a complete orthonormal set of momentum 
functions. The Sonine polynomials are defined by 

IM~NM(~ ) = (-- I)NaNM~IMILINMI(~2)e iMp, U = O, 1 . . . .  ; M = O, +- 1 , . . .  

(A.1) 

where ~ = p / ( 2 m T )  1/2, ~x--~sin% f y = ~ c o s %  and L ~ ( x )  are the 
Laguerre polynomials, anm--'= [n!/(n + Iml)!] 1/2 is a normalization factor 
such that 

(NM] N ' M ' )  = f d[ ~(~ )xI'~wt (~*)~N,M,(~") = 8NN,SM M, (A.2) 

where cp(f) = (1/~r)exp(-~.2) is the Maxwellian velocity distribution. 
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In deriving the matrix elements using this basis, two formulas will be 
helpful which can be proved by using the generating function 

e 2v~-;~ = ~ ~ aNm 4/NM(7)~2N+IMle -ig~ (a.3) 
N=O M=--oo N! 

The first formula is an addition theorem, 

c~ /~1 m=~ _~ N!aNM~2V+[tLlei~q)t'! *NM(7 + ~) = [ N I(N + IMI)!]1/2 ~: ~ (t" + I t~[)! ,I,,~(~) 

(A.4) 

where the summation is restricted by/x + m = M and 2(t' + n) + !/~[ + Iml 
= 2N + [M I. The second formula is the integral 

; d~ ~3( ~ )xIt*nrn(~/~/2 )~lln,m, (~/~/2) 

= ~mm'(- 1)n+n'(1/2)n+n'+lmlanman'm ' 
(n + n ' +  Im[)! 

n!n'! (A.5) 

The collision operator matrix elements are 

(NMIt(q)IN'M') 

= __ iv(2qr)l/2.; dP A f d~l d~2 qg(~'l)eP (~'2)(~12 "r)O(~12 "P) 

• - + - ] } 

(a.6) 

where ~'~,2 = ~1,2 -+ (~'12 " ?)? are the momenta after the collision. The evalua- 
tions of the various integrals proceeds along the same lines as in the 
three-dimensional case. (19) After introducing relative and center of mass 

momenta V and X, respectively, by 7 = (1/~-)(~'1 - ~'2), X = (1/~-)(~', + 
~'2), where X' = X and IT'I = IYI due to momentum and energy conservation, 
one may use formula (A.4) to expand ~P~M(X + V)/~/2), tPN'M'((X +- V') /~) ,  
and q~N'M'((X --+ V)/~-)  in terms of ~,m(X/~/2). Then the integral over the 
center of mass momentum X may be performed using formula (A.5). The 
final integrations over T and P are then straightforward and one obtains 

(Nmlt(q)]N'm') 

31/2 = it' --~ 

• (6M,M,H(+)(NM, N'M ') + (-1)MJM_M,(qo)H(-)(NM, N'M')} 

(A.7a) 
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where 

K~ (NM,  N ' M ' )  

= n + n "  

nl'l'pp' 

(n + n' + Iml)! r (v  + v' + (I M - m[ + [ a '  - m] + 3 ) / 2 ) / F ( 3 / 2 )  
x 

v[ v'[ n! n'! (v + [M - ml)! ( / +  IM' - ml)t (n + Im[)! (n' + [ml)t 

(A.7c) 

with the summation restrictions 2(v + n) + IM - m[ + ]m[ = 2N + IMI and 
2(v' + n') + I M ' -  m I + Iml = 2N'  + IM'I and 

Jr(,,) M'  2m) ~-- 1 ' 
* MM' ~--- 

i,~M--M" '7"r F• + [ l •M-m6 ] M '  
) -4L IM-M'I'I k - -L )  IM+M,_2mI,Ij , M +  o d d  

(A7.d) 

2 
ioCx ) = xJ ,Cx ) ,  

8 [ 1 - Jo(x) - J2(x)],  i , (x)  = --~ 

i2(x) = ~ J 2 ( x ) ,  

4 
i3(x) = 7 [ 1 -- Jo(x)],  

i4(x ) = 8 [1 - Jo(x) + J2(x)], 
3 x  2 

1 is(x) = 

2 
/6(x) = x 

1 
i7(x) = 

[3  --  J o ( x )  q- J 4 ( x ) ]  

[j,(x)- J,(x)] 

[3  --  J o ( x )  - J 4 ( x ) ]  

i,(x) = ~6 [43 + 27J2(x ) -  27J~(x)] 

1 15Jo(x)] i 9 ( x )  = g [23 - 

These quantities are normalized by in(0) = 1. 

and Jn(X) are Bessel functions of order n. Thus, these matrix elements are 
reduced to a finite threefold sum. We note that the matrix elements of the 
Lorentz-Enskog collision operator for self-diffusion may be obtained from 
Eq. (A.7a) by keeping only the first part in the bracket involving H (+). 

The results for the set of variables quoted in Eqs. (8a) and (8b) are 
easily obtained from Eq. (A.7). The functions in(X ), n = 0 . . . . .  9, which 
reflect the wavenumber dependence are defined as follows: 
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